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1 Introduction

We will take a look at two solutions to a problem in electrodynamics. The
first uses a more systematic method, while the second uses an elegant method
— leveraging elementary geometry in an abstract velocity space. The second
solution also has connections to the brachistochrone problem.
So, let’s dive right in!

2 The problem

Consider a region of space with a uniform electric field E and a uniform
magnetic field B of the form

E = E ĵ =

0
E
0

 B = Bk̂ =

 0
0
B

 .

The problem is to find the motion of a charge q in this region of space due to
the Lorentz force. The diagram below illustrates the setup.

E

B

q
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3 First Solution

For the purposes of this problem, we are only interested in 2D motion, so that
the position x and velocity v are embedded in the xy plane:

x =

x
y
0

 v =

ẋ
ẏ
0

 .

The Lorentz force describes the effects of E and B on the particle:

mẍ = qE+ qv ×B

Using E = E ĵ, B = Bk̂, and some cross product identities, we end up with a
system of differential equations for x(t) and y(t):

ẍ =
qB

m
ẏ (1)

ÿ =
qE

m
− qB

m
ẋ. (2)

There are many different strategies you could use to solve this system. One
thing you could do is just guess a solution for x(t) and y(t) - that’s what I’ll
do here. In particular, consider the parametric equation for a trochoid:{

x = ωRt− r sinωt

y = −r cosωt.

(x(t), y(t)) specifies the position of a point glued to a wheel rolling along the
x-axis. R is the radius of the wheel, ω is the angular speed of the wheel, and r
is the distance between the point and the wheel’s center. The diagram below
shows the rolling wheel at various times. The red trochoid curve describes the
position of the red dot as a function of time.

r

We can identify each term in the parametric equation. The ωRt term
corresponds to the x-coordinate of the center of the wheel, since ωR is the
speed of the wheel due to the rolling. The trig terms are added because any
point on the wheel not exactly at the center is going to be rotating around the
wheel:
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x = ωRt︸︷︷︸

translation term

− r sinωt︸ ︷︷ ︸
rotation term

y = −r cosωt︸ ︷︷ ︸
rotation term

.

Anyway, the point is that the trochoid curve does actually satisfy the
differential equations governing the charge’s motion. We can check that this is
the case by calculating the derivatives of x(t) and y(t),

{
ẋ = ωR− ωr cosωt

ẏ = ωr sinωt

{
ẍ = ω2r sinωt

ÿ = ω2r cosωt
;

and plugging them into equations (1) and (2),

ω2r sinωt =
qB

m
ωr sinωt (3)

ω2r cosωt =
qE

m
− qB

m
(ωR− ωr cosωt) . (4)

Note that the constants of motion ω and R can be read off of these expressions:

ω =
qB

m
R =

qE

mω2
=

mE

qB2
.

The final constant of motion r is determined by initial conditions, namely the
initial velocity v(0).

4 Second Solution

In the previous section, it was implicit that the Lorentz force is independent of
position, since the fields are uniform. Indeed, the Lorentz force only depends
on velocity, which we can use to our advantage by constructing a velocity
space — a plane containing all possible velocity vectors v:

v
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The point is that the evolution of the velocity vector only depends on where it
is in the velocity space, and on no other factors. Our aim will be to predict
how v evolves in velocity space, and to infer its trajectory in ‘real’ space.
So let’s unpack the Lorentz force; it consists of a magnetic part perpendicular
to the velocity:

v
qvB

and of an electric part pointing in a constant upward direction:

v
qvB

qE

F

The labels next to the vectors only indicate their magnitudes. Next, introduce
two new lines: one passing through the point marked P and perpendicular to
the direction of the electric field, and one passing through the tip of v and
perpendicular to F. Call their intersection point O:
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P

v
qvB

qE

F

O

Finally, introduce two vectors u and w aligned with the two lines such that
v = u+w:

v
qvB

qE

F

u

w

It turns out that this construction leaves us with two similar triangles, offset
by 90◦:
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v
qvB

qE

F

u

w

Among other things, this implies that F ∝ w. At this point, F satisfies two
important conditions:

1. F is perpendicular to w.

2. F is proportional in magnitude to w.

These two facts allow us conclude that w must gyrate around a circle centered
at the tip of u1.

1Note that we’ve made the (valid) assumption that du/dt = 0. I’ve chosen not to justify
it because the proof is already long enough.
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v
qvB

qE

F

u

w

Let’s summarize our findings:

The dynamics of v are such that u remains fixed in place (perpendicular to E)
while w rotates around it anchored to its tip.

For the sake of giving names to things, let’s say that ω is the angular speed of
w. This means that the Lorentz force F has magnitude

F = mωw.

It turns out this solution of v(t), where w is spinning around a constant
velocity u, is characteristic of the velocity of a point fixed to a rolling wheel
(the same wheel that we analyzed previously!). In this analogy, the wheel (of
radius R rolling at angular speed ω) moves at a speed of ωR, which
corresponds to u in velocity space.
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u = ωR.

A point at a distance r to the center of the wheel has an additional velocity
component of size ωr, perpendicular to the wheel’s radius line. This
component corresponds to w in velocity space.

w = ωr

We can also update our diagram:

v
qvB

qE

mω2r

ωR

ωr

Using the fact that these are similar triangles, we can work out some useful
relationships:

ωr

v
=

mω2r

qvB
=⇒ ω =

qB

m

ωR

ωr
=

qE

mω2r
=⇒ R =

qE

mω2

ωR

v
=

qE

qvB
=⇒ ωR =

E

B
.

The final of these relationships is deducible from the first two, but it’s nice to
see that our solution is self-consistent.
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5 Relation to the Brachistochrone and
3Blue1Brown’s Challenge

The brachistochrone problem is a very simple problem. How should you build
a chute connecting two points A and B so that a mass released at A and
sliding down travels between the two points in the shortest time possible?
It turns out that the chute should be built in the shape of a cycloid - the
special case of a trochoid where r = R. 3Blue1Brown presents a very neat
solution to this problem in the video The Brachistochrone, with Steven
Strogatz. I recommend watching it before moving on.
What I’d like to go through now is a miraculously simple solution which builds
on the methods used in section 4. The solution also answers 3Blue1Brown’s
challenge question, an extension of the brachistochrone problem relating to the
precise motion of the mass.
To start things off, it’s always useful to draw a diagram containing all of the
key features of the problem.

A

B

v

θ

y

The curve joining A to B is what we’d like to find. the dashed line is tangent
to the chute, and the velocity of magnitude v points in the direction of the
dashed line. The velocity makes an angle θ with the vertical.
The key insight in 3Blue1Brown’s presentation of the problem is that we can
use Snell’s law to derive an important property of the curve. Snell’s law is
usually applied in optics problems, but it is in fact a general result of Fermat’s
principle of least time. In the context of the brachistochrone problem, Snell’s
law tells us that

sin θ

v
is a constant of motion ,

in other words the quantity is conserved. 3Blue1Brown does a fine job of
explaining this in more depth.
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With this Snell’s law property in the back of our minds, Let us think about
the motion of the brachistochrone problem in velocity space. Let’s say that
the velocity of the mass at some point is given by the following state in
velocity space:

v

θ

Introduce a line l perpendicular to the velocity and passing through its tip.
Then introduce a perfectly horizontal line segment V starting at the origin of
velocity space and ending where it intersects l:

l

V

v

90◦

θ

From simple angle-chasing, we find that the acute angle between l and V is θ:
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l

V

v

90◦

θ

θ

Therefore,

v = V sin θ =⇒ V =
v

sin θ
,

so V is a constant of motion! This is very significant, because V being a
constant hypotenuse means that the velocity must remain on a circle of
diameter V :

l

V

v

90◦

θ

θ
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Finally, if the motion traces out a circle in velocity space, the trajectory and
the chute must be a cycloid curve generated by a uniformly rotating wheel.
Why must it be a uniformly rotating wheel? Well it suffices to check the
parametric equations for a cycloid generated by a wheel which rolls an angle
ϕ(t) (not necessarily equal to ωt):{

x(t) = Rϕ(t)−R sinϕ(t)

y(t) = R cosϕ(t)

and {
ẋ(t) = Rϕ̇−Rϕ̇ cosϕ

ẏ(t) = −Rϕ̇ sinϕ

Unless ϕ̇ is constant, the instantaneous diameter 2ϕ̇R of the circle will change
with time. We already know that the diameter of the circle is conserved, hence
the generating wheel must be rolling uniformly. This completes the proof.
I think that, more than anything, these two geometric solutions show that
there is often a way around the monotony of analytic methods. In closing, we
leave you with the following food for thought. . . if a brachistochrone curve so
resembles the trajectory of a charge in a uniform field, might there be
equivalents of the electric and magnetic forces in the brachistochrone?
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